Algebra 1B Live Lesson

U2L8 – Exponents and Exponential Functions Unit Review

© Connections Education LLC. All Rights Reserved.

Agenda

1. Review selected problems and topics from Unit 2 in preparation for the upcoming Unit 2 Test. 2. Use the 2-column note system to take better notes in math class. Bring your math notebook and pen or pencil to each math LiveLesson class.

2-Column Notes Template

- 1. Announcements/To Do's
- 2. School-Wide Learner Outcomes
- 3. LL Objectives
- 4. Vocabulary words
- 5. Problems
- 6. Summary (End of class)

- 1. Write down important details.
- 2. What are you going to work on this week?

- 4. Definitions (fill in as we go)
- 5. Steps to solving problems
- 6. 1 or 2 sentences about the LL class.

Reminders and To – Do's

Information

1. Complete 1 math lesson per day.

2. Check your WebMail every day

3. Be prepared to spend 4 - 6 hours per day on schoolwork.

4. Remind your Learning Coach to take daily attendance

What to do

1. Go to your Planner in Connexus to find the math lesson for the day

2. Go to Connexus to find WebMail

3. Complete lessons for the day from your Planner. Do not get behind on lessons.

4. Have your Learning Coach log into Connexus daily.

Reminders and To – Do's

Information

5. Go to the Message Board first for information about our math class.

6. Contact Mr. Elizondo for math questions.

Remember: You need at least 2 phone calls with Mr. Elizondo per semester.

What to do

5. Link to Message Board:

6. Call (559) 549 - 3244 and leave a voicemail if call is not answered.

Make an appointment at: <u>https://elizondo.youcanbook.me</u>

Send a WebMail

5. Suppose your friend's parents invested \$20,000 in an account paying 5% interest compounded annually? What will be the balance be after 10 years ?

Compound interest formula:
$$A = P\left(1 + \frac{r}{n}\right)^{n}$$

From the problem

P = \$20,000 r = 0.05 (5% as decimal) n = 1 (1 time per year) t = 10 years

$$A = 20000 \left(1 + \frac{0.05}{1} \right)^{1(10)}$$

 $A = 20000 (1.05)^{10}$

$$A = 20000 (1.62889463)$$

$$A = \$32, 577.89$$

1. What is the growth factor in the equation $y = 34 \cdot 4^{x}$?

$$y = a \bullet b^x$$
 $b = 4$

2. What is the initial amount in the function $y = 15 \cdot 3^{x}$?

$$y = a \bullet b^x \qquad a = 15$$

3. What is the decay factor in the function $y = 17 \cdot 0.2^{x}$?

$$y = a \bullet b^x \qquad b = 0.2$$

4. A population of fish in the lake decreases 6% annually. What is the decay factor?

Since is the population is going down by 6%, the decay factor is 0.94.

4) What is the graph of
$$y = 4 \cdot \left(\frac{1}{2}\right)^x$$
 ?

x		У
-2	4·(1/2)1−2	16
-1	4·(1/2)1−1	8
0	4· <i>(</i> 1/2 <i>)1</i> 0	4
1	4· <i>(</i> 1/2 <i>)1</i> 1	2
2	4· <i>(</i> 1/2 <i>)1</i> 2	1

1

1) Does the table represent an exponential function?

No, the table does not represent an exponential function.

2.) Evaluate the function $f(x) = 10 \cdot 2^x$ for x = 5.

$$f(x) = 10 \cdot 2^{x}$$
$$f(5) = 10 \cdot 2^{5}$$
$$f(5) = 10 \cdot 32$$

f(5) = 320

3.) An initial population of 10 rabbits triples every half year. The function $f(x) = 10 \cdot 3^x$ gives the population after *x* half year periods. How many rabbits will there be after 3 years?

$$f(x) = 10 \bullet 3^x$$

x represents the number of half-year periods

In 3 years, there are 6 half-year periods.

$$f(6) = 10 \cdot 3^{6}$$
$$f(6) = 10 \cdot 729$$
$$f(6) = 7290$$

After 3 years, there will be 7290 rabbits.

1) What is the simplified form of $\frac{2x^4y^{-4}z^{-3}}{3x^2y^{-3}z^4}$

$$\frac{2x^{4-2}y^{-4-(-3)}z^{-3-4}}{3}$$

$$\frac{2x^2y^{-1}z^{-7}}{3}$$

 $\frac{2x^2}{3yz^7}$

3) What is the simplified form of $\left(\frac{3}{r^3}\right)^2$

4) What is the simplified form of $\left(\frac{3a}{2b}\right)^{-1}$

 $=\frac{8b^{3}}{27a^{3}}$

4) Simplify $(2x^0y^2)^{-3} \bullet 2yx^3$ $(2x^{0}y^{2})^{-3} \bullet 2yx^{3} = 2^{-3} \bullet (x^{0})^{-3} \bullet (y^{2})^{-3} \bullet 2yx^{3}$ $= 2^{-3} \bullet x^0 \bullet y^{-6} \bullet 2yx^3$ $=(2^{-3+1})\bullet(x^{0+3})\bullet(y^{-6+1})$ $= 2^{-2} \bullet x^3 \bullet y^{-5}$ $=\frac{x^3}{2^2v^5} = \frac{x^3}{4y^5}$

5) Simplify $(8.9x10^5)^4$

$$(8.9x10^{5})^{4} = (8.9^{4})x(10^{5})^{4}$$

= 6274.2241x10²⁰
= (6.2742241x10^{3})x10²⁰
= 6.2742241x10²³

1) Simplify: $4n^4 \cdot 2n^{-3}$

$$4n^{4} \bullet 2n^{-3} = (4 \bullet 2)(n^{4} \bullet n^{-3})$$
$$= (8)(n^{4+(-3)})$$
$$= 8n^{1}$$
$$= 8n$$

2) Simplify:
$$2x^3y^{-3} \cdot 2x^{-1}y^3$$

$$2x^{3}y^{-3} \bullet 2x^{-1}y^{3} = (2 \bullet 2)(x^{3} \bullet x^{-1})(y^{-3} \bullet y^{3})$$
$$= (4)(x^{3+(-1)})(y^{-3+3})$$
$$= 4x^{2}y^{0}$$
$$= 4x^{2}$$

3) Simplify: $(7.1x10^{-5})(6.7x10^{-6})$

$$(7.1x10^{-5})(6.7x10^{-6}) = (7.1 \cdot 6.7)x(10^{-5} \cdot 10^{-6})$$
$$= (47.57)x(10^{-11})$$
$$= (4.757x10^{1})x(10^{-11})$$
$$= 4.757x10^{-10}$$

Write each number in scientific notation.

1. 0.0007 = 7 x 10^{-4}

2. 32,000,000 = 3.2×10^7

Write each number in standard notation.

3. 3.5 x 10⁶ = 3,500,000 4. 1.27 x 10⁻⁴ = 0.000127

Order the number in each list from least to greatest.

5. 5 x 10⁻³, 2 x 10⁴, 3 x 10⁰, 7 x 10⁻¹

```
5 \ x \ 10^{-3} \ 7 \ x \ 10^{-1} \ \ 3 \ x \ 10^{0} \ \ 2 \ x \ 10^{4}
```

Simplify each expression.

1.)
$$2^{-5} = \frac{1}{2^5} = \frac{1}{32}$$

^{2.)}
$$m^0 = 1$$

3.)
$$5s^{2}t^{-1} = \frac{5s^{2}}{t}$$

4.)
$$\frac{4}{x^{-3}} = 4x^{3}$$

Evaluate the expression for a = 2 and b = -4.

Questions?

- Check the Message Board first
- Send a WebMail
- You can also make an appointment at <u>https://elizondo.youcanbook.me</u>
- You can also call me at (559) 549-3244. If I'm not available to answer your call, please leave a voicemail with your full name and phone number.